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Correspondence between discrete and continuous models of excitable media: Trigger waves

Y. B. Chernyak,* A. B. Feldman, and R. J. Cohen
Division of Health Sciences and Technology, Harvard University–Massachusetts Institute of Technology, Cambridge, Massachuse

~Received 27 August 1996!

We present a theoretical framework for relating continuous partial differential equation~PDE! models of
excitable media to discrete cellular automata~CA! models on a randomized lattice. These relations establish a
quantitative link between the CA model and the specific physical system under study. We derive expressions
for the CA model’s plane wave speed, critical curvature, and effective diffusion constant in terms of the
model’s internal parameters~the interaction radius, excitation threshold, and time step!. We then equate these
expressions to the corresponding quantities obtained from solution of the PDEs~for a fixed excitability!. This
yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict
our analysis to ‘‘trigger’’ wave solutions obtained in the limiting case of a two-dimensional excitable medium
with no recovery processes. We tested the correspondence between our CA model and two PDE models~the
FitzHugh-Nagumo medium and a medium with a ‘‘sawtooth’’ nonlinear reaction source! and found good
agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is
actually controlled by a small number of parameters.@S1063-651X~97!13702-3#

PACS number~s!: 87.22.2q, 82.20.Wt, 82.40.Ck, 02.70.2c
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I. INTRODUCTION

Excitable media are spatially extended systems that s
port solitary waves that propagate unattenuated over l
distances. Common examples of excitable media are n
and muscle tissue in living organisms@1,2#, chemical reac-
tion systems@3–6#, solid-state electronic systems@7#, eco-
logical models@8#, and the aggregation of slime molds@9#.
These nonequilibrium media have been studied theoretic
using nonlinear partial differential equation~PDE! models
~reaction-diffusion equations! and also discrete state cellula
automata~CA! models. Both of these representations qua
tatively reproduce many features of real excitable media
PDE models, the model parameters are usually identi
with physical parameters of the medium, so the relation
real physical systems is well established. For typical C
models, such a connection does not exist, and a physic
self-consistent procedure for linking CA models to re
physical media has so far remained elusive~but see the re-
cent probabilistic automaton approach of Weimar and Bo
@10#!. The establishment of such a link is highly desirab
since CA simulations are more efficient computationally th
numerical solution of the PDEs, and in many cases may p
vide a more physically realistic representation of the m
dium. Further, the simplicity of CA models can yield deep
insights into the underlying processes that determine the
havior of the system. The quantitative link can thus lead
the development of reliable CA models that capture only
relevant features of wave propagation in specific med
These models may be used to perform systematic studie
large statistical ensembles of spatially inhomogeneous or
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address: Division of Health Sciences and Technology, Office E
330, Massachusetts Institute of Technology, Cambridge,
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ordered media and media that additionally possess high
sitivity to initial conditions. Such studies are essential f
understanding arrhythmia development in the diseased h

The goal of this paper is to establish a framework
linking CA models to real physical media. Our strategy is
exploit the fact that the PDE models for specific media
expressed in terms of the physical parameters of the sys
so their solutions can be used as an intermediate link to c
nect the CA model to the physical world. This strategy
fundamentally different from that of Weimar and Boon@10#,
who incorporate the explicit reaction kinetics of the PD
into the CA rules. Instead, we introduce a procedure
matching specific features of the traveling wavesolutionsof
the PDE model and the CA model in a physically se
consistent way. We consider some basic solutions, suc
plane waves and circular waves, and match the values o
parameters of these solutions~e.g., the wave speed, the crit
cal curvature! in both representations of the medium. Th
matching conditions constitute the quantitative link betwe
the CA model and the specific physical system under st
~though for some media the values of many PDE model
rameters are not precisely known!. A similar strategy was
recently employed with some success by several groups@11–
13#. Our approach is distinguished by its rigorous and s
tematic treatment of the behavior at small and large wa
front curvatures. The latter plays an important role in patt
formation and vortex wave dynamics. Here, we use a sim
CA model and restrict our analysis to ‘‘trigger wave’’ solu
tions arising in the limiting case of a medium without
recovery process. We must emphasize that this analysis i
required first step in the development of more complex C
models linked quantitatively to the recovery processes of
medium.

To illustrate our basic approach, we consider the pro
gation of the plane trigger wave shown in Fig. 1. In this C
model, each automaton~or element! possesses two state
resting and excited, and switches between them accordin
a specific transition rule. The figure depicts an arbitrary re

ent
-
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3216 55Y. B. CHERNYAK, A. B. FELDMAN, AND R. J. COHEN
ing element~the central element shown in bold! and the
overlap of its circular interaction neighborhood with the o
coming plane wave of excited elements~shaded!. The tran-
sition rule states that the resting element at the ce
switches to the excited state at the next time step when
number of excited elements inside the neighborhood exce
a threshold value. The model’s parameters are the circle
diusR, the excitation thresholdK, and the time stepDt. For
a suitably randomized lattice, the simple transition rule
lows us to derive the expressions for the speed of trig
wave fronts with arbitrary curvatures in terms of these th
parameters. As we shall show, this simple three param
CA model reproduces the major features of trigger wa
propagation in two-dimensional isotropic media.

Figure 2 shows the wave speedC versus the local wave
front curvaturek for convex trigger waves for both the CA
and PDE representations of a specific medium. In tw
dimensional media, the behavior of trigger waves is de
mined almost entirely by this curve, and it therefore captu
the major features of trigger wave dynamics. In the figu
the dots represent the points obtained via numerical solu
of the FitzHugh-Nagumo PDE model@14,15# ~see Sec. V A!
and the solid line plots the corresponding relation for the
model obtained using our matching procedure. The three
portant features of the plot are the plane wave speedC0
~point A!, the slopeD at pointA, and the critical curvature
kcr corresponding to vanishing wave speed~point B!. The
matching between the PDE and CA solutions requires
these three quantities coincide in both representations o
medium. For specific PDEs~with fixed parameter values!,
this generates three equations for the three unknown va
of R, K, andDt. The physical matching requirements dete
mine unique values for each CA model parameter, thus th
is no freedom to vary these values independently. The
respondence between the CA and PDE representations o
medium is quite remarkable.

A. Background

An excitable medium may be viewed as a continuum
diffusively coupled elements, each possessing a stable

FIG. 1. Excitation rule for a simple cellular automata model
an excitable medium. The cell at the center of the circle~outlined in
bold! switches from the resting to the excited state at the next t
step when the number of excited elements~shaded! inside the circle
equals or exceeds the central element’s threshold value. The m
parameters are the circle radiusR, the excitation thresholdK, and
the time stepDt.
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ing state and at least one metastable excited state. An
ment in the resting state can switch to the excited state if
local value of the diffusing quantity~the concentration of a
chemical reactant or the membrane potential in neuromu
lar tissue! exceeds the element’s excitation threshold. Diff
sion from excited to neighboring resting elements causes
resting elements to exceed threshold and excite, thus spr
ing an excitation wave spatially. Locally, the wave is cha
acterized by a rapid transition phase during which the e
ment switches to the excited state, followed by a recov
phase during which the element gradually recovers its ex
ability and slowly returns to rest. The combination of diffu
sive coupling and temporal variations in excitability giv
rise to a variety of traveling wave patterns.

Excitable media are described mathematically by coup
nonlinear PDEs that are difficult to study analytically. Th
structure of the solitary wave solutions can usually be fou
using the singular perturbation approach@16,17#, which ex-
ploits the fact that the excitation and recovery processes
cur on very different time scales and therefore the ratio« of
the excitation to recovery time scale can be used as a g
smallness parameter. In the limit of small«, the wave front
becomes a moving boundary layer separating the resting
excited regions. When«→0 and the wave-front curvatur
tends to zero, the motion of these boundaries obeys ce
equations of motion that constitute the basis for a kinem
approximation@18–22#. The kinematic approach is philo
sophically similar to the use of the eikonal approximation
electromagnetic theory, which is a first order PDE describ
the domain of geometrical optics. The classical Hamilto
Jacobi equation plays a similar role for the Schro¨dinger wave
equation in quantum theory. If the width of the wave front

f

e

del
FIG. 2. Wave speedC vs wave-front curvaturek for convex

wave fronts in an isotropic two-dimensional excitable medium. T
points were obtained via numerical solution of the FitzHug
Nagumo PDE model@14,15# in the limit of no recovery process
The solid line is the corresponding theoretical relation for our C
model obtained using the required values ofR, K, and Dt. The
points labeledA andB are the points used to match the PDE a
CA representations of the medium. The third matching criter
was the slope atk50, which for trigger waves is numerically equa
to the diffusion coefficientD of the propagating species.~All quan-
tities are computed in dimensionless units for a specific normal
tion of the PDEs!.
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55 3217CORRESPONDENCE BETWEEN DISCRETE . . .
much smaller than the wave front’s radius of curvature, th
the wave-front position is well defined and the kinema
approach is expected to adequately represent the behav
the system. Just as the validity of geometrical optics bre
down on the distance scale of a wavelength, the kinema
theories of excitable media must break down when the wa
front curvature radius is on the order of the wave-front thic
ness@23#. This is because when the system undergoes s
abrupt spatial variations, the diffusion processes domin
and the profile of the wave is not even approximately c
stant in time, thus the notion of a wave front is ill define
Despite their limitations, both kinematic and perturbati
methods have made important contributions to the und
standing of pattern formation in excitable media~see Meron
@18# for an excellent review!.

Clearly, the most straightforward and reliable method
studying complex wave patterns is direct numerical solut
of the PDEs@24–26#. Due to the complexity of these equa
tions, such solutions usually consume enormous comp
tional resources and it is generally impractical to perfo
systematic studies including a statistical ensemble of par
eters and initial conditions. Similar considerations apply
lattice gas automata~LGA! @27#, which are based on th
microscopic reactive particle dynamics and are even m
computationally intensive than the PDEs. LGA models
useful for description of phenomena on a scale between
molecular and the macroscopic~the scale at which the
reaction-diffusion PDEs represent an appropriate ‘‘me
field’’ approximation@27#!. It is important to note that since
the reaction-diffusion PDEs are coupled and nonlinear, i
difficult to develop intuition for the physical mechanism
that control the macroscopic behavior of the system. T
above facts have shifted considerable attention to more
cient CA models of excitable media@11,13,28–32#. Qualita-
tively, these models demonstrate remarkably similar beh
ior to PDE solutions and experiments, but there remains
physically consistent method for determining the correct
parameter values for specific media. In the remainder of
paper, we present a theoretical framework that allows u
calculate these parameter values in the«→0 limit. We re-
strict ourselves to the class of CA models that do not exp
itly incorporate the reaction kinetics of the PDEs.

B. Roadmap

This paper consists of five sections. In Sec. II, we co
sider the continuous PDE representation of an excitable
dium. We analyze the trigger wave solutions and review
technique for finding the plane wave speed. We also in
duce a suitable definition for the critical curvature and sh
how to calculate it from the PDEs. In Sec. III, we descri
our CA model in detail and derive the analytic expression
the plane wave speed in terms of the CA model parame
In the following section, we consider the effects of curvatu
on the propagation speed, which allows us to find the exp
sions for the effective diffusion constant and for the critic
curvature. In Secs. III and IV, we also compare the results
our theoretical calculations with CA model simulations. F
nally, in Sec. V we establish the correspondence between
continuous PDE and discrete CA representations. We c
sider two specific PDE models with fixed parameter valu
n
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the FitzHugh-Nagumo medium and a medium described b
reaction-diffusion equation with a ‘‘sawtooth’’ nonlinea
source. We conclude the paper with a brief discussion of
modeling of spatially inhomogeneous media and with a co
parison of this work to other recent approaches.

II. CONTINUOUS MODELS OF EXCITABLE MEDIA

A minimum model of an excitable medium is describ
by two variables that obey a set of the reaction-diffusi
equations@18#, which can be written in the form

]u

]t
5D¹2u1

f ~u,v !

tu
, ~1!

]v
]t

5
g~u,v !

tv
, ~2!

where ¹2 is the Laplacian operator in spatial coordinat
(x,y,z), t is time, u represents the ‘‘concentration’’ of th
diffusively propagating species,v is a recovery variable tha
controls the local recovery of excitability,D is the diffusion
coefficient ofu, andtu andtv are the time scales associate
with the evolution of u and v, respectively. The ratio
«5tu/tv typically satisfies«!1. The exact interpretation o
u and v depends on the particular system under study.
neuromuscular tissue,u represents the transmembrane pote
tial and the time scaletu is equal to the maximum membran
conductivity for the ‘‘fast’’ ionic current divided by the spe
cific membrane capacitance. The quantitytv may be inter-
preted as this same ratio for a ‘‘slow’’ repolarizing currentv.
The function2f (u,v) is the rescaled current-voltage cha
acteristic of the membrane. In neuromuscular tissue, the
fusion constantD depends only on the passive properties
the cells: the intracellular conductivity, the specific mem
brane capacitance, and the surface area to volume ratio
multidimensional tissues,D is a tensorD̃, and thus the sec
ond order derivative term in Eq.~1! should be written
“•(D̃¹u). For now, we restrict our analysis to the spec
case of a homogeneous and isotropic medium~D is a scalar
constant!. In dimensionless form, Eqs.~1! and ~2! may be
written as

]u

]t8
5¹82u1 f ~u,v !, ~3!

]v
]t8

5«g~u,v !, ~4!

where t85t/tu , and the space coordinatesxi8 are given by
xi85xi /ADtu. In subsequent analysis, all the primes of spa
and time coordinates are omitted unless explicitly stated o
erwise.

Equations~3! and ~4! describe a continuous system th
consists of a continuum of diffusively connected identic
dynamical elements each described by a set of ordinary
ferential equationsu̇5 f (u,v) andv̇5g(u,v). The functions
f (u,v) and g(u,v) in Eqs. ~3! and ~4! describe the local
nonlinear kinetics of the system’s elements. A typical pha
diagram for the local kinetics is shown in Fig. 3. Theu
nullcline f (u,v)50 generally has two stable, monotonical
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decreasing solution branchesu5U1(v), u5U2(v), and an
unstable, monotonically increasing branchu5U0(v) @33#.
The functiong(u,v)50 is assumed to be a monotonical
increasing function of u, which intersects the curve
f (u,v)50 at a single pointS. The pointS is stable with
respect to small perturbations and corresponds to the ‘‘r
ing’’ state of the system. Whenu is perturbed beyond the
threshold valuea, u increases abruptly~excites!, which ini-
tiates the long excursion~TABCD! in phase space shown i
Fig. 3 before finally returning toS. In a spatially extended
system, suprathreshold perturbations are provided by d
sion ofu from excited regions, which spreads the excitati
wave spatially.

Note that the set~3! and~4! constitutes a minimum mode
of an excitable medium in three respects: first, in the m
general case there may be more than one recovery vari
v1 ,v2 ,...,vn , each controlled by an equation similar to E
~4!; second, thev-type quantities may also spread diffu
sively, so in the right hand side of Eq.~4! a diffusion term
proportional to¹2v can be added; and finally, the nonline
source is assumed to be instantaneously activated~i.e., the
time constant of ‘‘turn on’’ of the source is zero!. In neuro-
muscular tissue, the variableu is the only diffusing quantity
and is identified with the local transmembrane potent

FIG. 3. Typical phase diagram for an excitable medium
scribed by Eqs.~3! and ~4!. The intersection pointS of the
nullclines f (u,v)50 andg(u,v)50 is the unique resting state o
the system. The resting state is ‘‘excitable,’’ meaning that for sm
perturbations ofu the system immediately returns toS, but large
perturbations beyond the threshold valuea initiate the long excur-
sion in phase space indicated by the dashed line. The horizo
segmentTA ~‘‘up-jump’’ ! represents the fast transition ofu from
the resting to the excited state. While in the excited stateAB, v
slowly increases, which eventually results in the triggering of
rapid reverse transitionBC ~‘‘down-jump’’ ! from the excited to the
refractory state. This state is characterized by the slow decrea
v and the gradual recovery of excitability ofu as the system return
to S. If the system is sufficiently recovered~beyond the pointD on
the trajectory!, a new excitation may be triggered provided the p
turbationdu shifts u beyond the branchU0(v) ~segmentEB!. In
the limit «→0, the system only supports the transition TA, since
time scale of evolution ofv is infinite. The system thus remain
indefinitely at pointA and never returns toS.
t-

u-

e
le,

l,

which is appropriately averaged over a physically infinite
mal region@34#, i.e., over a region including many cells, bu
still small compared with the size of the system. On the ot
hand, in these tissues there are a variety of processes~de-
scribed byv-type quantities! responsible for termination o
excitation and restoration of the initial state, such as the
activation~‘‘turn off’’ ! of the sodium current and the repo
larization by the potassium current. The description of th
processes evidently requires more than onev variable, so
direct interpretation of the second equation~4! in terms of
electrophysiological quantities is not always possible~but
see Refs.@35–37#!.

Solitary wave solutions to the system of equations~3! and
~4!, valid for small« may be analyzed using a perturbatio
approach@16#. According to Eq.~4!, when«!1 the variable
v evolves slowly, on a characteristic time scale 1/«, and re-
mains approximately constant whenu is changing rapidly in
the wave-front region. In the limit«→0, we have]v/]t50,
and hencev5vs5const, wherevs is the initial restingv
value. One can see that Eq.~3! has constant solutions tha
satisfy the equationf (u,vs)50. This equation has two stabl
solutionsu5U2(vs) and u5U1(vs) corresponding to the
resting and excited states, respectively~see Fig. 3!. We are
interested in a traveling wave solution joining these tw
stable states, one residing at1` ~resting! and the other at
2` ~excited!. The wave front is thereforea moving bound-
ary layer connecting two plateau regions in whic
u5U2(vs) andu5U1(vs), respectively. These ‘‘ignition’’
or ‘‘trigger’’ wave solutions resemble those in bistable m
dia, where elements remain in the excited state indefini
after firing. For a specificvs , the profile of the wave front
and the~dimensionless! propagation speedĉ0 are found by
seeking a traveling wave solution of Eq.~3! of the form of a
steadily propagating plane waveu~j!, wherej5x2 ĉ0t. Sub-
stitutingu5u(j) into Eq. ~3! and using Eq.~4! with «501
we arrive at the following nonlinear eigenvalue proble
@38#:

d2u

dj2
2 ĉ0

du

dj
1 f ~u,vs!50, ~5!

lim
j→`

u~j!5U2~vs!, lim
j→2`

u~j!5U1~vs!. ~6!

The solution of this problem is the profile of the trigger wa
u5u(j) and the dimensionless propagation speedĉ0 ~the
eigenvalue!. This problem must generally be solved nume
cally for specificf (u,v) @39#, although some classes of exa
solutions and semianalytical approaches may also be us
@40–44#. A trigger wave profile obtained numerically for
simple model of ventricular myocardium is shown in Fig.

In dimensional terms, the plane wave speedC0 is given
by C05 ĉ0AD/tu and is a lumped parameter characterizi
each plane wave solution of system~3! and ~4!. Mathemati-
cally this quantity is a functional off (u,vs). For each solu-
tion of Eqs. ~5! and ~6!, we define the specific length an
time scales

L0[
D

C0
, t0[

L0
C0

5
D

C0
2 . ~7!
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55 3219CORRESPONDENCE BETWEEN DISCRETE . . .
In the limit «→0, the quantityt05tu/ ĉ0
2 is theonly charac-

teristic timefor front formation of the plane wave. To unde
stand this, we first note that if we rescale the sourcef (u,v)
by a factorl, then the eigenvalueĉ0 must rescale by a facto
l1/2 @42,43#. Further, note that in Eq.~1! if we scaletu by a
factor l, we must also scalef (u,v) by l in order not to
change the magnitude of the source term. Thust05tu/ ĉ0

2

remains invariant with respect to this scaling.
In two dimensions, the eigenvalue problem for wa

fronts with curvaturek yields @46,33# the following approxi-
mate expression for the dimensional wave speedC:

C5C01Dk. ~8!

The curvature of the frontk is related to its curvature radiu
r by k561/r , where it is implied thatr.0 and the minus
sign corresponds to a convex wave front and the plus s
corresponds to a concave front. Since the outer normal to
front is commonly chosen in the direction of propagatio
k.0 for a concave front andk,0 for a convex front. Equa-
tion ~8! can be understood from the well known fact that t
Laplace operator¹2 in the axially symmetric case is given b
]2/]r 21(1/r )]/]r . The term with the first derivative is pro
portional to the curvaturek51/r of the coordinate surface
r5const, and on substitution into Eq.~3! gives rise to the
second term in Eq.~8!. This was first observed by Zeldovic
in 1944 in his analysis of the stabilizing effect of curvatu
on flame front propagation@45#. In the limit «→0, expression
~8! can also be derived very elegantly from simple geome
considerations for a steadily propagating wave@46#.

The accelerating influence of concave fronts and the
tarding effect of convex fronts reflects the underlying diff
sive mechanism of the spread~note the curvature correctio
to the plane wave speed is proportional to the diffusion c

FIG. 4. Trigger wave profileu~j! obtained using the fully acti-
vated, ‘‘fast’’ ionic currents in ventricular myocardium~see Ref.
@39# for details!. The quantityu represents the transmembrane p
tential. The originj0 for the dimensionless phasej5x2 ĉ0t was
chosen to coincide with the inflection point ofu~j! ~du/dj5max!.
This point is indicated by the dot. The wave frontu~j! is a moving
boundary layer separating resting [u5U2(vs)] and excited
[u5U1(vs)] regions. For the model used above,vs is identically
zero.
n
he
,

c

-

-

stantD!. This idea is illustrated in Fig. 5. Wave fronts wit
positive curvature~concave! tend to focus the diffusive flux,
which reduces the time required to exceed threshold ahea
the front. This increases the propagation speed relative
plane wave. Conversely, a convex front~negative curvature!
defocuses the diffusive flux which retards the progress of
front. According to Eq.~8!, the front speedC vanishes at a
critical curvaturekcr of the order of2C0/D. This expression
is an estimate of the critical curvature, since at large con
curvatures the front’s shape may change appreciably on
time scale of front formationt0 ~nonsteady propagation!. In
this case, the speed may depend nonlinearly on the curva
and may also depend on tangential derivatives ofu along the
front @18#.

For trigger waves, we may obtain a value ofkcr from the
steady state~zero speed! solutionucr~r! of Eqs.~3! and ~4!,
wherer is the radial coordinate. Setting]u/]t50 and]v/
]t50 in these equations we have

d2ucr
dr2

1
n

r

ducr
dr

1 f ~ucr ,vs!50, ~9!

wheren51 or n52 in the two- or three-dimensional cas
respectively. The solution of Eq.~9! is subject to the require
ment thatucr~r! is bounded in the interval 0,r,`. It can be
shown that this condition results in a monotonically decre
ing ucr~r! with the derivatives vanishing at both ends of t
interval 0,r,` ~a cross section through a typical solutio
for ucr~r! is shown in Fig. 19!. We use the stationary~zero
speed! wave profileucr~r! to define a characteristic radiu
rcr . To accomplish this, we first introduce the renormaliz
derivative

pcr~r!52
1

ucr~0!

ducr~r!

dr
. ~10!

The monotonicity ofucr~r! allows us to considerpcr~r! as a
probability density function, andrcr can be defined as a cha
acteristic measure of this distribution, for example, the mo

-

FIG. 5. The focusing~concave! and defocusing~convex! effects
of wave-front curvature on excitation. A convex shape tends
reduce the diffusive flux per unit time~current! into point 0 ahead
of the wave front, thereby increasing the time required to exceed
excitation threshold at point 0. This reduces the speed of a con
wave relative to a plane wave. Conversely, a concave wave f
will tend to increase the current, which results in a faster speed
a plane wave.
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3220 55Y. B. CHERNYAK, A. B. FELDMAN, AND R. J. COHEN
~maximum! or first moment. The critical curvaturekcr is then
the negative of the inverse ofrcr :

kcr52
1

rcr
. ~11!

We note that when« is nonzero, no such steady-state so
tion exists and propagation is terminated at a critical nonz
wave speed~see @22# for an analytical estimation of this
quantity in the kinematic limit!.

For each reaction-diffusion medium described by spec
functions f (u,v) andg(u,v), we have shown how to calcu
late the unique values of the plane wave speedC0 and criti-
cal curvaturekcr for trigger waves. These two quantities a
‘‘lumped’’ solution parameters that are functionals of t
nonlinear sourcef (u,vs). Together with the diffusion con
stantD, these quantities determine the major features of
plot of the propagation speed versus wave-front curva
~the plot shown in Fig. 2!: C0 is the intercept atk50, D is
the slope atk50, andkcr is the intercept with the abscissa.
the following sections, we describe a discrete CA model a
show that its parameters can be defined in such a way tha
trigger wave solutions have the same characteristicsD, C0,
andkcr as in the continuous medium.

III. DISCRETE MODELS OF EXCITABLE MEDIA

Since their introduction in 1946 by Wiener and Rose
blueth, discrete CA models have made important contri
tions to the understanding of wave processes in excita
media @28–31# ~see also Ref.@47# for CA approaches in
chemical media and Ref.@48# for formal properties of cellu-
lar automata!. Typical CA models consist of a two- or three
dimensional array of identical elements arranged on a sq
lattice. Each element represents a square or cube of exci
medium and switches between a finite number of states
cording to specific state transition rules. The simplest mod
possess three states: excited, refractory, and resting~excit-
able!, with the interactions between the elements restricte
the nearest neighbors on the lattice. In terms of a diffus
process, the excitation rules can be viewed as reflecting
‘‘sourcing of the diffusing substance’’ by excited elements
their resting neighbors. In ‘‘edge-triggered’’ models@49#, an
excited element switches its resting neighbor into the exc
state at the next time step, which spreads the wave spat
This excitation rule suffers from the drawback that the
sulting wave fronts acquire the shape of the lattice eleme
~square! and propagate at speeds that depend on direc
~anisotropy!. This scheme also cannot incorporate the effe
of wave-front curvature on propagation speed, since an
ment is only excited by its nearest neighbors and thus d
not sense the shape of the oncoming wave front~as reflected
by the spatial distribution of excited elements!.

CA models of excitable media were made more realis
by the introduction of non-nearest-neighbor interaction ru
@32,11#. In these models, elements interact with all neighb
ing elements inside a region of characteristic sizeR ~e.g., a
circle with radiusR, or a square with sideR!. We shall refer
to R as the interaction radius and denote it byRd when
expressed in lattice unitsDx (R[RdDx). The scheme stud
ied extensively by Markus and Hess@11# is shown in Fig. 6.
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In the figure, each seed point is assigned to a random lo
tion inside each element and the central element’s neigh
are determined by locating all elements whose seed po
fall inside a circle of radiusR emanating from the seed poin
of the central element. The central element switches from
resting to the excited state when the number of exci
neighbors equals or exceeds the threshold valueK. This in-
teraction occurs in one model time stepDt. For Rd suffi-
ciently large, this interaction rule produces circular wa
fronts ~on the average!, which is essential for modeling con
tinuous isotropic media@50#. We will later show that this
property permits us to compute the propagation speed
lytically as a function ofR, K, andDt.

In the Markus and Hess model, the effects of wave-fro
curvature on propagation speed are incorporated autom
cally ~at least qualitatively! because the number of excite
neighbors always depends on the local shape of the
proaching wave front. Just as in continuous media~Fig. 5!, a
concave wave front increases the propagation speed rel
to a plane wave, since the curvature tends to increase
number of excited~‘‘sourcing’’ ! elements insideR, thus re-
ducing the time required to reach the threshold valueK at the
center. Conversely, convex wave fronts tend to reduce
number of excited elements, which therefore decreases
wave speed compared to a plane wave. The ability of
model with givenR to resolve different values of the curva
ture depends on the spatial discretizationRd .

A. CA model for trigger waves

In this section, we describe a simple CA model of a tw
dimensional excitable medium based on the Markus
Hess scheme~Fig. 6!. This model shall only incorporate th
minimum necessary features for simulating trigger waves
isotropic media. We therefore omit all quantities related
the recovery processes of the medium, such as the refrac
period and the recovery curve~the dependence of the plan
wave speed on recovery time!. In our model, each elemen
represents a small square region of excitable medium w
sideDx. To each model element we assign a seed point
random location inside its square and three internalvari -

FIG. 6. The lattice randomization scheme of Markus and H
@11# used in our simple discrete CA model. One seed point is
signed to a random location inside each square element. The n
bors of the central element are determined by locating all elem
whose seed points fall inside the circle of radiusR centered on the
seed point of the central element.
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55 3221CORRESPONDENCE BETWEEN DISCRETE . . .
ables: a phase or ‘‘autochrone’’T ~the time since the pre
vious excitation!, an interaction radiusR, and an excitation
thresholdK. The element’s neighbors are determined fro
the interaction radiusR as shown in Fig. 6. Note that th
randomization of the lattice permits us to treatR as a
continuous-valued quantity. Each element is also assig
one internalparameter: the exciting state durationTE , which
is the number of time steps that an element is an effec
‘‘source’’ to its neighbors. Note that this parameter can
treated as independent of the recovery parameters. Fo
ample, in neuromuscular tissue, we may identifyTE with the
inactivation time of the fast sodium current. The stateU of
an element can assume two values,uR , or uE , which corre-
spond to the resting and excited states, respectively.

The evolution of the elements’ states occurs in time st
Dt and the autochroneT is a dimensionless quantity ex
pressed inDt units. We shall mark this discrete time as
superscript, so the state transitions of elementk from time
stepn to n11 are governed by its autochrone valueT k

n, its
current stateU k

n, and the total source strength supplied by
neighborsQk

n defined as

Qk
n5 (

neighbors
wkjSj , ~12!

where the indexj runs over all elements in the neighborho
R of elementk. The coefficientswkj represent the local con
tribution of element j to the excitation of elementk
~0<wkj<1!, whileSj represent the intensities of the source

Sj5HS if 0,Tj<TEj

0 otherwise.
~13!

Note thatwkj may be viewed as reflecting the fraction of th
diffusing substance ‘‘sinked’’ by elementk in one time step
Dt from a source atj , while the intensitiesSj represent the
intrinsic magnitudes of the sources. The distributionwkj is
analogous to the ‘‘mask’’ introduced by Weimaret al. @51#
and the element weight function utilized by Fast and Efim
@52#. The state transitions for elementk with excitation
thresholdKk obey the following rules:

Uk
n115H uE if Uk

n5uR and Qk
n>Kk

Uk
n otherwise;

~14!

Tk
n115H 0 if Uk

n115uR

Tk
n11 otherwise.

~15!

In the CA model, the trigger wave front is represented
a moving spatial discontinuity in the field ofU values. In
subsequent analysis, we should be mindful that this sh
boundary is artificial, since the interaction actually occu
over a length scaleR. Phenomena observed on length sca
smaller thanR should generally be disregarded~we will later
see thatR is related to the wave-front spatial scaleL0 of the
plane wave PDE solution!. Finally, we note that we must b
careful to distinguish between the model’s spatial resolut
R and the spatial discretizationRd5R/Dx, which controls
the statistical averaging of the source strengthQ and the
resolution of the wave-front shape insideR.
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In the sections that follow, we derive explicit expressio
for the plane wave speed, critical curvature, and effect
diffusion constant for trigger waves in terms of the thr
parametersR, K, and Dt. The trigger wave solutions ar
obtained in the limitTE→`, which is analogous to the limi
«→0 of the PDEs, since in both cases excited eleme
source to neighboring elements indefinitely. For the rema
der of this paper, we shall use aminimumversion of the CA
model withwki[1 ~a ‘‘flat’’ distribution! and all source in-
tensitiesS51. For this realization of the model, the loc
source strengthQ is always identical to the number of ex
cited neighbors.

B. Plane wave propagation speed

The dependence of the plane wave speedc0 on the thresh-
old valueK can be analyzed analytically for practically an
neighborhood shape. Here we consider the circular inte
tion region with radiusR5RdDx ~an anisotropic medium
can be described using an elliptical neighborhood!. Figure 7
displays the excitation of an arbitrary element located
point O by an oncoming plane wave with wave frontMN.
Since we have restricted our analysis toTE5`, the ‘‘sourc-
ing’’ region always extends beyond the edge of the inter
tion circle ~the wave thicknessc0TE is infinite for arbitrarily
smallc0!. According to Eqs.~12!–~15! and Fig. 7, the centra
element at pointO switches to the excited state at the ne
time step (Dt) and the wave front shifts by the distanc
c0Dt5R cos~a0/2! when the number of excited neighborsQ
inside the circle reaches the threshold valueK. Since the
lattice is randomized, the number of excited neighbors is
the averageQ5A0/Dx

2, whereA0 is the area of the shade
portion of the circular neighborhood shown in Fig. 7. T
condition for the elements on and behind the planar fron
excite point O at the next time step isQ5K. Since
A05R2~a02sina0!/2, we obtain the following expressio
for the plane wave speedc0:

FIG. 7. Geometry for calculating the plane wave speed in
CA model. The underlying square grid~omitted for clarity! is
shown in Fig. 6 and has an internode spacingDx. We consider the
marginal case where the element at pointO switches to the excited
state when the number of its excited neighborsA0/Dx

2 is equal to
its threshold valueK. The wave frontMN reaches the pointO at
the next time step and shifts by the distancec0Dt.
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c05
R

Dt
cos

a0

2
[Rd

Dx

Dt
cos

a0

2
, ~16!

wherea0 is the solution of the transcendental equation

G0~a0![a02sina05 k̂ S k̂[
2KDx2

R2 5
2K

Rd
2D . ~17!

The functionG0~a0! defined in Eq.~17! is a monotonically
increasing function in the interval 0,a,2p @its derivative,
G8~a0!512cosa0.0# and varies from G0~0!50 to
G0~2p!52p, so it has an inverse functionG 0

21( k̂)[a0( k̂)
in this interval ~it actually exists on the whole real axis!.
Note that whena0!1, G0~a0!;a0

3/6 and thereforea0( k̂)
;A3 6k̂ for 6k̂!1. The functionG0~a0! is universal, indepen-
dent of any parameters, and therefore, its inverse func
a0( k̂) shown in Fig. 8 is also a universal function indepe
dent of any parameters. This fact allows us to usea0 itself as
a measure of the excitability. When a0;0 the medium is
highly excitable, and whena0;p the medium is the leas
excitable. Note that as discussed in the next subsection
casep<a0,2p corresponds to such a low excitability th
only concave wave fronts can propagate. We shall refer toa0
as theangular threshold. It is interesting that an expressio
similar to Eq.~16! appeared in a different ‘‘scaling’’ relation
for the plane wave speed found by Ito@13# using a different
modeling approach.

To check relations~16! and ~17!, we performed simula-
tions of plane waves on a two-dimensional rectangular lat
with periodic boundary conditions in one direction~a cylin-
der!. Each element in the lattice was assigned an ident
interaction radiusR ~Rd in lattice units! and threshold value
K. Plane waves were initiated by exciting a band of eleme
at one end of the cylinder~the width of the band was alway
wider thanRd units!. The propagation speed of the plan
waves was computed by tracking the average position~aver-
aged over the seed point locations! of the wave-front edge
~the boundary between excited and resting elements!. The
plane wave speed versus dimensionless thresholdk̂ for two

FIG. 8. The angular thresholda0 vs the dimensionless excitatio
thresholdk̂52K/Rd

2. The functiona0( k̂) is universal and is inde-
pendent of any parameters. We usea0 as a measure of excitability
high excitabilities correspond to smalla0 ~low excitation thresholds
k̂! while low excitabilities correspond to largea0 ~high excitation
thresholdsk̂!.
n
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different spatial discretizationsRd5R/Dx is shown in Fig. 9.
The curves are the theoretical values obtained using E
~16! and ~17!. The error bars are the standard deviations
the measured plane wave speeds and represent the stat
fluctuations induced by the lattice randomization. The m
nitude of this ‘‘noise’’ is approximately independent ofc0,
so it becomes progressively more important asc0→0. These
fluctuations can result in spurious block~termination of the
forward progress of the wave! when the shift of the frontd in
one time stepd[c0Dt becomes;Dx, since the success of
wave-front shift on this length scale depends on the spec
seed point locations. Arbitrarily small wave speeds can o
be simulated reliably in the limitRd→`, Dx→0 whenR is
held fixed.

IV. EFFECTS OF WAVE-FRONT CURVATURE

Similar to the plane wave case, the propagation speed
curved wave fronts can be found from the fact that the av
age number of the excited elements within the interact
region is proportional to the area of the portion of the int
action region covered by the oncoming wave. It is conv
nient to define a dimensionless, rescaled curvatureh[Rk[
6R/r . Concave and convex wave fronts correspond toh.0
andh,0, respectively, whileh50 ~infinite curvature radius!
corresponds to a plane wave. We shall first consider pro
gation of wave fronts with small to moderate curvature a
then we shall study the domain of validity of the obtain
equations and the effects at its boundary. We then obtain
expression for the critical curvature by considering the c
of vanishing propagation speed. Finally, we consider the
pendence of the propagation speed on wave front curva
in the limit uhu→0 and arrive at an expression for the effe
tive diffusion constant of the CA medium.

FIG. 9. Measured plane wave speedcDt/Dx vs excitation
thresholdk̂ for two different spatial discretizationsRd . The theo-
retical curves are computed using Eqs.~16! and ~17!. The wave
speeds were obtained by assigning a single thresholdK to each
element in the lattice and measuring the shift of the wave frond
~averaged over the internal seed point positions! after each succes
sive time stepDt. The points represent the average ofd over 25
time steps and the error bars are the standard deviations.
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55 3223CORRESPONDENCE BETWEEN DISCRETE . . .
A. Wave fronts with small and moderate curvatures

Since the transition from the resting to the excited st
occurs over a region with characteristic sizeR, this value is
an effective measure of the wave-front size as well as a m
sure of the spatial resolution of the discrete model. Thus
curvature rangeuhu<1 appears to be a natural domain
validity that does not call for a special discussion. We sh
start with Figs. 10~a! and 10~b!, which show the geometrie
for calculating the wave-front speeds of concave and con
fronts with moderate curvatureuhu<1. In both cases, the fig

FIG. 10. Geometry for calculating the speed of curved wa
fronts in the CA model. The underlying square grid~omitted for
clarity! is shown in Fig. 6 and has an internode spacingDx. The
approaching wave front with curvaturek is locally approximated by
a circle with radiusr561/k centered at the pointO8. In one time
stepDt, the wave frontABC8DE shifts to the pointO when the
number of excited neighbors~a! Aø/Dx

2 ~b! Aù/Dx
2 is equal to

the threshold valueK ~of the element at pointO!. The wave speeds
for concave and convex wave fronts arecø andcù , respectively.
e

a-
e

ll

x

ure displays the situation at the moment immediately prec
ing ~by one time step! the excitation of the element at poin
O. The oncoming wave frontABC8DE is locally approxi-
mated by a circle with centerO8 and radiusr . The arcBCD
of the interaction circle is subtended by the anglea, which
varies generally in the semi-interval@0,2p!. The arcBC8D
of the wave front is subtended by an angleb, which will be
consideredpositive if the curvature centerO8 and the point
O lie on the same side of the front, andnegativeotherwise.
Such a sign convention allows us to write the equat
R sin~a/2!5r sin~ubu/2! relating the anglesa and b in the
form

sin
b

2
5h sin

a

2
, ~18!

which is valid for both concave and convex wave fronts.
new position of the wave front passing through pointO8 is
shown by the dashed line. As can be seen from Fig. 10,
concave wave front shifts by the distanc
uC8Ou5cøDt5R cos~a/2!1@r2r cos~b/2!# and the convex
wave front shifts by uC8Ou5cùDt5R cos~a/2!
2@r2r cos~b/2!#. This shift occurs when the number of ex
cited neighborsQ inside the interaction region reaches t
threshold valueK. The average number of excited neighbo
can again be evaluated asA/Dx2, whereA is the area of the
interaction region covered by the oncoming wave@shaded in
Figs. 10~a! and 10~b!#. In the concave case, the number
excited neighbors is Aø/Dx

2, where
Aø5(R2/2)~a2sina!2~r 2/2!~b2sinb!, and the second
term contributes negatively~b.0!. In the case of convex
wave fronts, the average number of excited neighbors
Aù/Dx

2, where the areaAù is given by the same expressio
asAø , but with the last term contributing positively~b,0!.
Using the above expression for the shiftuC8Ou and equating
Q5Aø/Dx

2 andQ5Aù/Dx
2 to the threshold valueK we

obtain

c5
R

Dt H cosa

2
1
1

h S 12cos
b

2 D J , ~19!

G0~a!2
1

h2 G0~b!5 k̂[
2KDx2

R2 , ~20!

whereG0~a! is defined in Eq.~17! and we again introduce
the same dimensionless thresholdk̂ as in Eq.~17!. These
expressions are valid for both convex and concave w
fronts. Note thatG0 is an odd function andG0~b!.0 when
b.0 andG0~b!,0 whenb,0. The parametersa andb are
related by Eq.~18!, and therefore for any fixedh the three
relationships~18!–~20! determine a curve on the (k̂,c) plane.
By varying the curvatureh, we obtain a family of curves
c5c( k̂,h), which is the object of our further consideratio

Because we have assumed thatuhu<1, Eq. ~18! can be
uniquely solved forb at anya. This is because whenuhu<1
or r>R, we always haveubu,a<p, so Eq.~18! has only one
solutionb52 arcsin@h sin~a/2!#. Substituting this expression
into Eqs.~19! and ~20! we obtain

e
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c5
R

Dt H cosa

2
1
1

h
@12A12h2sin2~a/2!#J ,

k̂5G0~a!2
1

h2 G0„2 arcsin@h sin~a/2!#…. ~21!

It is readily seen that the second terms in both equations~21!
vanish in the limith→0 ~the expression in square brackets
;h2 and G0;h3 when h!1!. The set of equations~21!
therefore reduces to expressions~16! and ~17! for plane
waves ash→0, i.e., as the wave front becomes planar. T
family of dimensionless propagation speedsĉ[cDt/R ver-
sus the dimensionless excitation thresholdsk̂ parametrically
represented by Eqs.~21! is shown in Fig. 11 for various
dimensionless curvaturesh. The bold curve in the middle
corresponds to the plane wave caseh50, similar to those
shown previously in Fig. 9 for two different values ofRd ,
but now rescaled to a single curve. Let us show that in
whole domain of validity of the set~18!–~20! the propaga-
tion speed always decreases monotonically when the thr
old grows at fixed curvature. Taking the derivative
ĉ[cDt/R from Eq. ~19! we have 2dĉ/da52sin~a/2!~1
2db/da!. Similarly, using Eq. ~20! one can show tha
dk̂/da52(12db/da)sin2~a/2!. Therefore, we obtain at an
fixed h,

dĉ

dk̂
52

1

4 sin~a/2!
, ~22!

and because 0<a,2p we always havedĉ/dk̂,0, so ĉ is
indeed a decreasing function of the thresholdk̂.

Parametric equations~21! can also be considered at fixe
thresholds and represented as a family of propagation sp
versus curvature, each curve marked by a certain valuek̂
as displayed in Fig. 12. One can see from the figures tha

FIG. 11. Dimensionless propagation speedĉ vs dimensionless
excitation thresholdk̂ for selected dimensionless curvaturesh ac-
cording to Eqs.~21!. The thick curve corresponds to the plane wa
caseh50 shown in Fig. 9 for two different values ofRd , but now
rescaled to a single curve. The value ofh ranges from21 to11 in
steps of 0.2 from bottom to top.
e

e

h-

ds

or

positive curvatures~concave fronts!, the propagation spee
at each thresholdk̂ is increased relative to the plane wav
speed, while for negative curvatures~convex fronts! the
propagation speed is reduced. The mechanism contro
the speed of curved fronts in the discrete model is analog
to the focusing and defocusing of diffusive flux~a linear
process! in continuous media, since the magnitude of t
source~the linear sum of excited elements on the front ins
R! depends on the curvature. Note that in our calcu
tions with h,0 we have limited the range ofa variation
by the requirement that the propagation speed be n
negative, cù>0. This imposes the limitation tha
a<amax~h![2 arccos~uhu/2!, soa needs to be varied only in
the interval@0,amax#.

We performed simulations of curved wave fronts on
two-dimensional lattice. Each lattice element was assig
an identical interaction radiusR ~Rd56 lattice units! and
identical threshold valueK. Wave speeds and wave-fron
curvatures were measured for convex waves by exciting
cular domains of elements of varying initial radiiR0 ~in lat-
tice units! and computing the average of the radial distan
at timet ^Rt& to points on the wave front~defined by excited
elements with at least one adjacent resting neighbor! as the
wave propagated outward. The ‘‘instantaneous’’ wave sp
was given by (̂Rt1Dt&2^Rt&)/Dt, while the dimensionless
curvatureuhu wasRd/^Rt&. A similar procedure was used fo
concave fronts except we excited the entire lattice and
ated ‘‘holes’’ of resting elements of different sizesR0. The
results for three differentK values and the correspondin
theoretical curves computed using equations~21! are shown
in Fig. 13. The simulation results demonstrate good agr
ment with the theory. To illustrate the effect of finiteTE , the
convex wave simulations forK548 were performed using
TE520 time steps. The result is a minimum nonzero spe
below which no convex waves stably propagate@the lowest
curve in Fig. 13~a!#. A complete analysis of this effect is th
subject of a future study.

FIG. 12. Propagation speedĉ vs wave-front curvatureh for
different excitation thresholdsk̂ ~shown on the right! according to
Eqs.~21!. At eachk̂, the propagation speed is increased by posit
curvature~concave fronts! and decreased by negative curvatur
~convex fronts! relative to the plane wave speedc0( k̂) ~h50!.
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55 3225CORRESPONDENCE BETWEEN DISCRETE . . .
B. Domain of validity

We now wish to analyze the set of equations~18!–~20!
for curved wave fronts in the whole domain in which the
equations make sense both physically and mathematic
The mathematical considerations require thatc>0, k̂.0 and
also that the simultaneous choice of anglesa andb related
by Eq. ~18! be consistent with the conditionsusin~a/2!u<1
and usin~b/2!u<1. All calculations so far are based on th
assumption that the wave front can belocally approximated
by a circle. In the case of convex wave fronts with arbitra
values ofh<0, this assumption can be justified even wh

FIG. 13. Measured wave speedĉ vs curvatureh for convex~a!
and concave~b! fronts. The spatial discretizationRd56. Simula-
tions were performed for three different threshold valuesK510, 25,
and 48, corresponding to the dimensionless thresholdsk̂50.55,
1.39, 2.67, respectively.~a! We created small circular domains o
excited elements and measured the radius of the excited do
~averaged over seed point locations! as the wave propagated ou
ward; ~b! we created large holes of resting elements inside a lat
of fully excited elements and measured the radius of the res
domain~averaged over the seed point locations! as the wave propa
gated inward. In both~a! and ~b!, the wave speed was defined
(u^Rt1Dt&2^Rt&u)/Dt and the dimensionless curvatureuhu as
Rd/^Rt& ~all radii are measured in lattice units!. The large fluctua-
tions forK548 at high convex curvatures are due to the poor s
tistics at these very slow wave speeds. The theoretical curves
computed using Eqs.~21!.
ly.

uhu@1. For large curvaturesh,0 and uhu@1, the parameter
2h can be understood as an inverse of the radiusr of the
circle, which approximates the wave front globally~as a
whole!. On the other hand, for concave fronts with curvatu
h.1, the overlapping area depends on the entire wave-f
shape and cannot be fully described by local curvature.
example, whenh.1 the whole wave front may completel
fall inside the interaction region. In this case, the overlapp
area completely surrounds the central element and forw
propagation of the front is no longer meaningful~the front
implodes!. In addition to the fact thatR is the spatial reso-
lution of the model, this is another important physical reas
to disregardh.1. On the other hand, the local approxim
tion of the wave-front shape as a circle is valid for conv
fronts with uhu@1, so the model’s behavior is physicall
meaningful in this region. In this case, we may need to c
cumvent the relation of our model to the continuous PD
and look for a direct link to real physical systems~note that
the PDEs are themselves an approximate description of
underlying physical processes in the medium!. We thus con-
sider the behavior of our model in the whole curvature ran
hP~2`,1#.

C. Critical curvature

In this subsection, we find an expression for the curvat
corresponding to vanishing propagation speed~the critical
curvature!. According to Eqs.~18!–~20!, at fixed curvature
the propagation speed decreases monotonically when
threshold k̂ grows and it eventually vanishes when th
threshold reaches a maximum valuek̂max. Considering the
range of curvaturehe@22,1# and settingc50 in Eq.~21!, we
readily find that this occurs when cos~a/2!52h/2, or when
a5amax~h![2 arccos~2h/2!. It follows that at the critical
situation 2amax2b52p~b,0!, which allows us to obtain the
maximum threshold value as a function of curvatureh in the
form

k̂max5H~h! ~22<h<1!, ~23!

where

H~h!52 arccosS 2
h

2 D1
2

h S 12
h2

4 D 1/2
7

2

h2 arccosS 12
h2

2 D , ~24!

and the minus and plus signs are to be used forh.0 and
h,0, respectively. As one can see from Eq.~23!, the maxi-
mum threshold valuek̂max exists and the propagation term
nates continuously through ‘‘slowing down’’ whenuhu<2.
Note also that according to Eq.~23! k̂max.p whenh.0 @a
concave front can still propagate even whena0( k̂) exceeds
p, which is the value corresponding to vanishing plane wa
speed#. Whenh,22 the situation becomes more interestin
In this case the propagation terminates at a certain crit
nonzero speed as is illustrated in Fig. 14. In all such ca
b52p. Setting b52p in ~18!–~20!, we thus obtain the
threshold and the speed at which the propagation of the f
with given curvatureh terminates:
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k̂5 k̂max5
2p

h2 , ĉ5 ĉmin511
2

h
~h<22!. ~25!

Figure 15 shows the propagation speedĉ versus thresholdk̂
for convex fronts withuhu.1 ~the curves 5, 6, and 7 corre
spond touhu.2!. The lower parts of the curves correspond
b from the interval@p,2p# and the end points correspond
b52p. Comparing Eq.~23! and the first equation in~25!, we
see that the maximum thresholdk̂max is a continuous function
of h, which we plot in Fig. 16~a!. The portion of the lower
curve to the right of the vertical lineh522 is described by
Eq. ~23! and corresponds to vanishing propagation spe
The portion of the curve to the left of the verticalh522 is
described by relations~25! and corresponds to nonzero cu
off speeds. If one setsĉmin50 for h>22, then the cutoff
speedĉmin becomes a continuous function ofh.

It is important to note that the graph in Fig. 16 can also
considered as representing the critical curvaturehcr at which
propagation terminates for a given thresholdk̂. As discussed
previously, the critical curvature for trigger waves is defin
by the requirementc50, so for our CA model the critica
curvature must be found from Eq.~23! with k̂>p/2.

D. Diffusion constant in the CA medium

In this subsection, we consider the behavior of the C
model in the limit of small curvatures. If we compare eachĉ
versush curve in Fig. 12 with that given by expression~8!
for continuous media, we see that the slopedĉ/dh at h50
represents the effective~dimensionless! diffusion constantD̂
of the medium, while theĉ intercept corresponds to th
speed of a plane wave at thresholdk̂. As can be observed in
Fig. 12, the slopesD̂ at small h depend on the specifi
threshold valuesk̂. We can obtain an explicit expression fo
this dependence by evaluating~18!–~20! for h→0 within the
first order inh. In this approximation, Eq.~18! reduces to
b.2h sin~a/2!, so the term@12cos~b/2!#/h[~2/h!sin2~b/4!
in Eq. ~19! becomes ~2/h!@h/2 sin~a/2!#25~h/2!sin2~a/2!.
Equation~19! thus becomes

c5S cosa

2
1

h

2
sin2

a

2 D R

Dt
, ~26!

FIG. 14. Geometry for convex wave fronts withuhu5R/r.2.
The critical curvature is associated with a nonzero critical sp
cmin . When 0<uhu<2 the critical speedcmin is always equal to zero
The caseuhu52 is shown by the dashed circle.
d.

e

and becauseG0~b!.b3/6 for small b;h, expression~20!
reduces to

k̂5a2sina2
4

3
h sin3

a

2
. ~27!

When the curvature is small we havea5a01Da, where the
anglea0 corresponds to the plane wave case andDa is of the
order ofh. Therefore within the same precision one can
placea by a0 in the second term in Eq.~26! and in the last
term in Eq. ~27!. To obtain from Eq.~26! an expression
similar to Eq.~8!, we just need to find the first two terms o
expansion of c in the power series inh. Substituting
a5a01Da into Eq. ~27! and using Eq.~17! we have
~12cosa0!Da24

3h sin3~a0/2!.0, which yields
Da52

3h sin~a0/2!. Using this expression and the fact th
cos~a/2!.cos~a0/2!2~Da/2!sin~a0/2! we may reduce Eq.
~26! to

c5S cosa0

2
2

h

6
sin2

a0

2 D R

Dt
. ~28!

Recalling Eq.~16! and the fact thath5Rk, wherek is the
usual dimensional curvature, we finally obtain the followin
expression for the speed of the curved front in the region
small curvatures:

c5c01H R2

6Dt
sin2

a0

2 J k, ~29!

wherea0 is the angular threshold, which can be expressed
terms the usual thresholdK or k̂ defined in Eq.~17!. Com-
parison of Eq.~29! with Eq. ~8! requires that the expressio
in the curly brackets be identified with the diffusion coef
cientD of the continuous PDE model:

FIG. 15. Propagation speedĉ vs excitation thresholdk̂ for con-
vex wave fronts withuhu>1 obtained using Eqs.~18!–~20!. The
values ofh are marked next to the curves. The dashed portions
the curves are computed forb in the interval@p,2p#. These end
points are highlighted in the figure by an asterisk and the% symbol,
respectively. Note that for convex fronts withuhu>2, wave propa-
gation terminates at a critical nonzero speed~see geometry in Fig.
14!.
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D5
R2

6Dt
sin2

a0~ k̂!

2
, a0~ k̂![G0

21~ k̂!, ~30!

whereG0
21 is the inverse of the functionG0 defined by Eq.

~17!. In accordance with our derivation, this expression forD
is valid for small values ofh ~k!1/R!, and can be expecte
to hold up to moderateh;1. For fixedR andDt, the effec-
tive diffusion constantD is a monotonically increasing func
tion of threshold k̂ and is shown in dimensionless form
(D̂5DDt/R2) in Fig. 17. The points~( symbols! on the
graph were obtained by numerically evaluating the slope
the curves shown in Fig. 12 ath50. The slopes in the linea
region agree well with the theoretical values ofD̂. The fact

FIG. 16. Maximum excitation thresholdk̂max/p vs curvatureh.
~a! The solid portion of the curve is obtained using Eq.~23! and
corresponds to the casecmin50, while the dashed portion~h,22!
corresponds to nonzero cutoff speeds given by Eq.~25!. This curve
may also be interpreted as the critical curvaturehcr as a function of
excitation thresholdk̂. The dashed line represents the estima
k̂max obtained using a linear speed vs curvature relation with sl
D̂5dĉ/dhuh50 and interceptĉ0. ~b! Close up of the region indi-
cated by the square in~a!.
of

that bothD andc0 depend on the parameterk̂ @as seen from
Eqs. ~16!, ~17!, and ~30!# implies thatthese values may no
be varied independentlywhenR andDt are held fixed. If we
wish to vary the local propagation speed at fixed time s
Dt, we must restrict the variations ofR andK to the surface
D(R,K)5const, that is, we must varyR andK in such a way
thatD remains fixed. This is becauseD is a constant of the
medium.

In the previous three sections, we established the fra
work for relating the trigger wave solutions of the PDE a
CA representations of the medium. We are now in a posit
to formulate the requirements for representing a continu
medium using a CA model. In the remainder of the paper,
discuss this methodology and use it to write and solve
equations for the CA parameters values corresponding
given PDEs. We realize this program for two specific PD
models of an excitable medium.

V. CORRESPONDENCE

This section discusses the specific procedure for find
the CA parameter values for an excitable medium descri
by a specific set of PDEs. These values are found via s
tion of the set of equations obtained by equating the
model expressions for the plane wave speedc0, critical cur-
vature kcr , and diffusion constantD to the corresponding
PDE values. For a given spatial discretizationRd , this yields
a set of three equations for the three unknown CA mo
quantities:R, K, andDt. Each solution of these equation
must be unique, therefore the CA parameter values may
be varied independently.

The correspondence between the trigger wave solution
the CA model and those of the PDEs can be seen m
directly by comparing the respective space scalesL0 and
time scalest0 for propagating plane waves with one anoth
Using expression~16! for the plane wave speed and Eq.~30!
for the effective diffusion constant, we obtain the expre

d
e

FIG. 17. The dimensionless diffusion constantD̂[DDt/R2 of
the CA model as a function of excitation thresholdk̂ according to
Eq. ~30!. The points indicated by the( symbol were obtained by
numerically evaluating the slopes of the curves shown in Fig. 1
h50.
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sions forL05D/C0 andt05D/C 0
2 in the CA medium:

t05Dt
tan2@a0~ k̂!/2#

6
, ~31!

L05R
sin2@a0~ k̂!/2#

6 cos@a0~ k̂!/2#
, ~32!

where the angular thresholda0( k̂) is the inverse of the func
tion G0~a0! defined in Eq.~17!. We see that the interactio
radiusR is proportional to the wave-front space scaleL0 and
the time stepDt is proportional the wave-front formatio
time t0, where the proportionality constants depend on
specific excitability @the dimensionless angular thresho
a0( k̂)# of the medium. For given PDE values of the pla
wave speedC0 and diffusion coefficientD, Eqs. ~31! and
~32! determineR and Dt for each value of the angula
thresholda0 ~or thresholdk̂!. Note that for varyinga0, each
solution of these equations automatically satisfies the c
straintD(R,K)5const, where const is the PDE model diff
sion coefficientD. SinceR5RdDx, eitherRd or Dx may be
chosen freely, but their product must satisfy Eq.~32!. Gen-
erally, we want to chooseRd as large as computational re
sources will allow. The third relation, which fixes the valu
of a0, is found by matching the critical curvatures in th
PDE and CA representations.

To see the relationship between the angular thresh
a0( k̂) and the critical curvature more clearly, we first defi
two new dimensionless quantitiesR8[R/L0 and
Dt8[Dt/t0. If we substitute these rescaled quantities in
Eqs. ~16! and ~30!, we see that in these unitsC0851 and
D851, independent of the value ofa0. In Fig. 18, we plot
the wave speed versus wave-front curvature for con
fronts in these units for selected values ofa0. Whena0 is

FIG. 18. Propagation speed~in units of L0/t0! vs curvature~in
units of 1/L0! for different values of the angular thresholda0 ac-
cording to Eqs.~31! and ~32!. In these units the plane wave spe
C0 and diffusion constantD are equal to 1.0 for alla0. We see that
the shape of the curves and the critical curvature depend sensit
ona0. For sufficiently largea0, the relation is approximately linea
up to moderate wavefront curvatures.
e

n-

ld

x

large ~low excitability!, the relation is approximately linea
over a broad range of curvatures, but the shape of the c
in the nonlinear region and the value of the critical curvatu
depend strongly ona0. For trigger waves, the solution valu
of a0 must lie in the range 0.74p<a0<p ~corresponding to
p/2<k̂<p!, since the trigger wave speed atk5kcr must van-
ish ~this is equivalent to the condition that the dimensionle
critical curvaturehcr satisfyh>22!.

To find a0, recall that Eq.~23! can be interpreted as th
dependence of the critical curvaturehcr on the dimensionless
thresholdk̂ and can be written ask̂5H~hcr!, where the func-
tion H is defined by Eq.~24!. Expressingk̂ in this relation as
G0~a0! and settinghcr5Rkcr we obtain

G0~a0!5H~Rkcr!, ~33!

where the constantkcr is the specific PDE solution value
This equation must be solved simultaneously with Eqs.~31!
and~32!, which uniquely determines all three parametersR,
K, andDt. Since we only match the PDE and CA mod
wave speed versus curvature plot at two points~A andB in
Fig. 2! and a slope~at k50!, we expect that the correspon
dence will not be exact in the nonlinear regions of the
curves, but we do expect the CA model relation to interp
late the PDE values in this region reasonably well.

A. Examples

The FitzHugh-Nagumo model~FN! @14,15# is a simple
model of an excitable medium often used to study travel
wave patterns in neuromuscular tissue. In a two-dimensio
homogeneous and isotropic medium, the FN model in
appropriate limit may be obtained from Eqs.~3! and~4! with
f (u,v) given by a cubic polynomial and«50 ~the latter al-
lows us to setv to the initial, resting valuevs50!. In dimen-
sional form and using a specific normalization@53# this
yields

FIG. 19. A cross section through the two-dimensional critic
~stationary! wave profileucr~r! obtained for the FN model~«50!
with a50.25 andD51.0. The critical radius of curvaturercr is 3.66
and is indicated by the arrow. The corresponding critical curvat
kcr[21/rcr is 20.273.
ely
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]u

]t
5D¹2u1u~a2u!~u21!, ~34!

where a is a positive constant~0,a,1/2!. The nonlinear
eigenvalue problem~5!,~6! for trigger waves in the FN
model ~34! has a simple analytic solution with the plan
wave speed given byC05(D/2)1/2(122a) @53#. The plane
wave speedC0 is a decreasing function ofa, which plays the
role of the excitation threshold. Below, we use the spec
parameter valuesa50.25 andD51.0, which gives a theo
retical value of the plane wave speedC050.35.

To find the critical curvaturekcr for these parameter val
ues, we recall from Sec. II that the critical radiusrcr can be
defined as ther value of the maximum of the probabilit
densityp~r! defined in Eq.~10!, i.e.,p~rcr!5max. In the case
under consideration,rcr also represents the position of th
inflection point of the stationary wave profile at whic
u9~rcr!50. To find rcr , we solved Eq.~9! numerically for
ucr~r! by matching numerical solutions to the asympto
analytical solutions nearr50 and r5`. At infinity the
source can be linearized and we haveucr(r);K0(As1r),
whereK0 is the cylindrical function of imaginary argumen
~McDonald function! and s152d f(0)/du. This procedure
yieldeducr~r50!'0.6269 with the inflection point located a

FIG. 20. Measured propagation speedC ~triangles! vs curvature
k in the FitzHugh-Nagumo~FN! medium withD51.0 anda50.25.
The curve is the computed theoretical CA model relation for th
specific PDE parameter values. The average value of the FN w
speed was computed by tracking the position of the inflection p
of the wave front at each time step. For convex fronts, the po
were obtained by perturbing the critical profileucr and following its
evolution. The points are identical to those shown in Fig. 2. F
concave wave fronts, the initial configuration consisted of a lat
of excited nodes~u51.0! with a large central hole of resting node
~u50.0!. This configuration was first allowed to evolve until th
wave front fully formed. The end point of the CA model curve
positivek is found by settingb5p in ~18!, ~19!, and~20!. This is
the maximum value ofb for which forward propagation of a con
cave wave front is meaningful. The space step and time step
the PDEs were chosen to beh50.25 anddt50.001. The measured
plane wave speed in PDEs using these values wasC050.353 in
good agreement with the theoretical value 0.354. The agreeme
excellent over a broad range of curvatures.
c

rcr53.66, thuskcr[21/rcr520.27. A cross section throug
the critical profile is shown in Fig. 19.

We calculated the corresponding CA model parame
values using the method described above and obta
R56.62,Dt56.43, andk̂51.79. For a spatial discretizatio
Rd512 this givesK5129 elements. We see that the value
R is of the order of the wave-front space scaleL052.83
~actually L0 underestimates the wave front width since
more closely approximates the smaller length constant of
foot of the wave!, andDt is of the order of the front forma-
tion time t058.0. To check the correspondence between
PDE and CA model representations, we solved the FN eq
tion ~34! numerically for the evolution of a perturbed critica
wave-front profileucr~r! on a two-dimensional square lattic
with no flux boundary conditions. The numerical solutio
were obtained using explicit Euler integration for the rea
tion term f (u) and an explicit forward time centered finit
difference scheme for the diffusion term@54#. The nine-point
Laplacian formula@55# used gives a rotationally invarian
Laplacian toO(h4), whereh is the lattice spacing@56#. We
used the valuesh50.25 for the grid spacing anddt50.001
for the time step. The wave speed was estimated by trac
the motion of the inflection point on the lattice. The theore
cal CA model speed-curvature relation and the numer
solution of the PDEs is shown in Fig. 20. The CA mod
relation interpolates the PDE solution values quite well.

As another illustration, we now consider the case of
commonly used piecewise linear current sourcei (u)
@40,22,41# shown in Fig. 21. For this case, the reaction te
f (u) is given by

f ~u!52 i ~u!52 H s1u when u,u*
s2~u21! when u>u* ,

~35!

where without loss of generalityv has been set to zero. Th
constantss1 ,s2 are the slopes, andu

*
plays the role of the

excitation threshold~0,u
*

,1!. The solution of the nonlin-
ear eigenvalue problem~5!,~6! for the dimensionless plan
wave speedĉ0 is @40–42#

e
ve
t
ts

r
e

or

is

FIG. 21. The piecewise linear currenti (u) commonly used in
simplified ~caricature! PDE models of neuromuscular tissue@the
reaction sourcef (u)52 i (u)#. The slopes ofi (u) for u,u* and
u.u* ares1 ands2, respectively. The quantityu* plays the role of
the local excitation threshold.
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ĉ05As2
~12u* !22u

*
2 l

Au* ~12u* !@12u* ~12l!#
~l[s1 /s2!.

~36!

The solution for the critical profileucr~r! is obtained by solv-
ing Eq. ~9! with the source~35! under the condition thatucr
is bounded in the domain 0,r,`. We shall use the new
variableû[12u~r! in the regionu>u

*
and utilize the vari-

ableu in the region of the foot~leading edge! of the wave
whereu,u

*
. The functionucr~r! is thus determined by the

equations

d2u

dr2
1

n

r

du

dr
2s1u50 when u,u* , ~37!

d2û

dr2
1

n

r

dû

dr
2s2û50 when u>u* . ~38!

The equations in both the exterior~37! and interior~38! re-
gions are linear differential equations with singular points
r50 andr5`. A solution of such an equation is a linea
combination of two solutions out of which one is singul
nearr50 and bounded nearr5`, and vice versa. The re
quirement that the solutions are bounded implies that in
inner solution~u>u

*
, the region includingr50! only the

term regular atr50 is retained, whereas in the outer soluti
~u,u

*
, the region includingr5`! only the term bounded a

r5` is retained. This leaves us with two integration co
stants, one for each region. A solution of a differential eq
tion of the second order must be continuous together with
derivative on the entire interval, including the point whe
u5u

*
. This smoothness condition generates two equati

for the two integration constants, which allows us to even
ally find ucr~r!.

Similar to the above FN case, we define the critical rad
rcr by the conditionp~rcr!5max. Note that the discontinuou
source~35! gives rise to a wave profile that does not poss
an inflection point, and thereforercr cannot represent thi
point anymore. However, it is not difficult to show that th
maximum of the distributionp~r! is reached exactly at th
matching point of the inner and outer solutions, whereucr
reaches the valueu

*
. Thus, the critical radiusrcr is deter-

mined by the equation

ucr~rcr!5u* . ~39!

After some transformations, the matching conditions
gether with relation~39! reduce to a simple transcenden
equation forrcr that takes different forms in the case of tw
~n51! and three~n52! dimensions. In both cases the equ
tion is formulated in terms of the renormalized critical radi
r *[rcrAs2 and in the two-dimensional case has the form

I 1~r * !

I 0~r * !
5

Alu*
12u*

K1~Alr * !

K0~Alr * !
, ~40!

wherel5s1/s2 , andI n andKn are the cylindrical functions
of imaginary argument andn ~n50,1! is the order of the
cylindrical function~I n are modified Bessel functions andKn
are McDonald functions!. In the three-dimensional case, th
equation for the critical radius assumes the elementary f
t

e

-
-
ts

s
-

s

s

-
l

-

m

tan r *5
~12u* !r *
11u* r *

Al
. ~41!

It can be readily shown that each of the equations~40! and
~41! has a unique positive solutionr

*
~under some unrestric

tive conditions!. Thus, the smoothness conditions allow us
explicitly find ucr~r! and determine the values ofrcr
5r * /

As2 andkcr[21/rcr . Numerical solutions of equation
~40! are plotted in Fig. 22~a! as r *5As2rcr versusu* for
several values ofl. Figure 22~b! showsr

*
plotted versus the

rescaled threshold valueu* (11Al). The overlap of these
curves illustrates thatr

*
depends approximately on a sing

‘‘lumped’’ parameter of the nonlinear sourcei (u).
To compare the solutions of the PDEs with piecew

linear source to the CA model simulations, we chose
specific cases150.25, s250.75 ~which are identical to the

FIG. 22. ~a! The renormalized critical radiusr *5As2rcr vs
thresholdu* for selected values of the slope ratiol5s1/s2 of the
piecewise linear currenti (u). The l values of the curves labele
1–10 are 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, and
respectively.~b! Renormalized critical radius vs the rescaled thre
old parameteru* (11Al). The curves in~b! illustrate thatr * de-
pends approximately on asingle lumped parameter ofi (u).
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end slopes in FN case considered above! andu
*

50.255a
~which is the same threshold value as the FN case!. In the
chosen unitsD51.0. We tracked the evolution of two circu
lar regions of excited elements with initial radii slight
larger than the critical curvature radius21/kcr in both mod-
els. To ensure that the initial configurations were identic
the circular regions~with u set equal to 1! in the PDE system
were first evolved until the wave fronts fully formed, the
the position of the wave front~the locus of points with
u5u

*
! was used to set the initial configuration of excit

elements in the CA model. The numerical PDE solution a
the CA simulations are shown in Fig. 23. In the first tw
snapshots~a! and~b!, the waves emanating from each circ
lar region evolve through large negative curvatures as t
expand outward. These wave fronts eventually collide w
one another, creating a single wave front with two cus
@snapshot~c!#. These cusp regions have large positive cur
tures, which quickly dissipate as the combined wave fr
propagates outward@snapshot~d!#. The agreement betwee
the numerical solution of the PDEs and the CA simulatio
is quite good.

B. Inhomogeneities

The most striking feature of the matching procedure u
in the previous subsection is that it yields unique values
all CA model parameters, including the time stepDt. In a
homogeneous medium, such a restriction presents no d
culty since the model time stepDt will be identical at all
locations in lattice. On the other hand, in a medium w
spatially varying excitability, the time stepDt becomesa
local quantity. Since Dt must have a fixed value for a
model elements, Eqs.~31! and~32! can only be satisfied fo
given local values oft0 andL0 if the angular thresholda0 is
determined by these equations alone. This means tha
value can no longer be adjusted to obtain the correct lo
critical curvature. However, as can be seen in Fig. 18, w
a0 is sufficiently large~the cases we are interested in!, the
speed-curvature relation is approximately linear over a br
range of curvatures, and thus for small and moderate cu
tures the value of the propagation speed as a function
curvature is controlled by just two parameters: the slopeD
and interceptC0. Therefore, the discrepancy introduced
varyinga0 can be expected to be negligible if the wave co
figurations do not incorporate regions with large curvatu
These same considerations also apply to media with a
tially varying diffusion constantD. We conclude that our
minimum CA model can also simulate trigger waves in s
tially inhomogeneous media, provided the local wave-fro
curvatures are not too close to the local critical curvaturekcr .

C. Other discrete models

Gerhardt, Schuster and Tyson~GST! @32,12# recently ob-
tained a set of relations between a CA model and a P
model of an excitable medium. Their analysis yielded a
proximate expressions for the CA model’s plane wave sp
c0 and effective diffusion constantD in terms of the model’s
internal parameters. These relations permitted them to ob
a ‘‘reasonably good’’ simulator of the Belousov
Zhabotinskii~BZ! reaction that compared favorably with th
‘‘Oregonator’’ @57# PDE model of the reaction and exper
l,
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ments. Their result was an important conceptual bre
through. On the other hand, the validity of the expressio
they obtained was undermined by the underlying~artifactual!
anisotropy in their model~as discussed by the authors!, and
also by the fact that their expression forD was found by
regression of simulation data: they measured the slo

FIG. 23. Evolution of two excited circular domains in the C
model and a PDE model with piecewise linear source and«50. The
PDE model parameters weres150.25, s250.75, u*50.25, and
D51.0, which according to Eq.~36! gives a plane wave spee
C051.186. The value of the critical curvaturekcr was obtained from
solution of Eq.~40!, which yieldedkcr521.12. We solved for the
required CA model parameter values using Eqs.~31!, ~32!, and~33!
and obtainedR50.86,Dt50.12, anda050.89p. We choseRd512
for the spatial discretization. The space steph and time stepdt for
the numerical PDE solutions were chosen to beh5R/Rd50.072
and dt50.01•Dt50.0012. In the PDE solutions~left!, the light
gray and dark gray regions correspond tou,u* , andu>u* , re-
spectively. In the CA model simulations~right!, resting elements
are shown in light gray and excited elements in dark gray. In~a! and
~b!, the circular waves evolve through large negative curvature
they propagate outward. The collision att'30Dt produced a single
wave front with two cusps as shown in~c!. Each cusp has a larg
positive curvature, which dissipates rapidly as the combined w
front propagates outward~d!. The CA model simulations and th
numerical solutions of the PDEs agree very well.
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(dc/dk) uk50 and averaged over the values obtained for d
ferent thresholdsK at fixed neighborhood size@32,12# ~the
threshold dependence ofD was thus averaged out!. We
found thatD is a strong function of the thresholdK ~Fig. 17!.
Weimar et al. @51# later showed that a similar dependen
holds in the GST model. In the GST model simulations
Ref. @12#, the thresholdK was a dynamically varying quan
tity, thus the model’s internalD value could not have re
mained constant. This is because according to Eq.~30!, the
neighborhood sizeR and thresholdK must be varied simul-
taneously to keepD constant when the time stepDt is held
fixed. This deficiency in the GST approach was addresse
the more recent work of Weimar, Tyson, and Watson@58#,
where a specific ‘‘mask’’~similar to our weighting distribu-
tion wjk! was chosen that flattens theK dependence ofD.
We should also point out that the matching procedures u
by GST and Weimaret al. do not consider the critical cur
vature, which plays an important role in vortex dynamics,
the fact that the slope of the speed-curvature relation is o
identical to the diffusion coefficient of the propagating sp
cies in the«50 limit ~for nondiffusingv variable!. In models
that incorporate recovery~« nonzero!, the value of the slope
depends on« ~though this correction may actually be smal!.

Using a fundamentally different CA modeling approac
Ito @13# obtained expressions forC0, D, and also the critical
curvaturekcr . In Ito’s model, the wave speed is controlled b
varying the propagation speed of a source ‘‘signal’’ betwe
the CA elements, rather than by varying the local excitat
threshold as required by the parabolic~diffusion-type! PDEs
of excitable media. In such a model, a variation in the lo
excitability is tantamount to a local rescaling of time. Th
approach can result in unphysical or artifactual behavior
is inconsistent with the PDE description of the mediu
~though this was admittedly not Ito’s stated purpose!. For
example, the wave speed versus wave-front curvature r
tion arising in the model is multiple valued in a certain ran
of excitabilities, which does not appear to be consistent w
PDE solutions for typical excitable media~see also our com
ments below!. Also, the critical curvatureskcr are calculated
for vanishing propagation speedc50 ~the case considered i
this paper for trigger waves!. As discussed previously, suc
-
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solutions only exist in the«50 limit. Since Ito’s model ex-
plicitly incorporates the effects of a recovery process~« non-
zero!, the computed critical curvatures cannot be compa
to values in real physical media.

D. PDEs and discrete modeling philosophy

Finally, we note that in order to develop a physically se
consistent discrete model linked to solutions of PDEs,
must choose a sensible modeling philosophy. The theor
partial differential equations classifies all continuous fie
processes into three categories as described by elliptic, p
bolic, and hyperbolic PDEs. Elliptic PDEs, similar t
Laplace’s equation describe equilibrium states of continu
systems. Parabolic equations, similar to diffusion or therm
conductivity equations, describe relaxation to equilibriu
Hyperbolic PDEs, similar to the d’Alembert wave equatio
describe propagating~causal! processes, which possess i
trinsic local propagation velocity. Reaction-diffusion equ
tions describing excitable media are typical parabolic PD
that do not incorporate any intrinsic propagation speed. T
propagation speed observed is determined by the subtle
terplay between local sources and sinks and is also affe
by the boundary conditions. The underlying process in It
model, sending a signal with a given speed, is a proc
described by a hyperbolic wave equation and can hardly
rectly correspond to a physically distinct parabolic proce
In contrast, the plane wave speed in our CA model is de
mined by the condition that the source strengthQ equal the
magnitude of the sink~the thresholdK!. Indeed, according to
Eq. ~30!, the model’s interaction lengthR and interaction
timeDt for a propagating wave have proven to be linked
a constantD with the dimensions of a diffusion coefficient
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